

.

.

Page 278-9 #2,3,4, 5, 6

2

page 290 #8, 15

p 290 #6,7

.

More Multiplying...

$$\begin{array}{c} (a) \sqrt{3} \left(\sqrt{3} + 2 \right) \\ (b) \left(5\sqrt{2} - 1 \right) \left(\sqrt{2} + 1 \right) \\ (c) \left(\sqrt{2} + 1 \right) \left(\sqrt{2} - 1 \right) \\ (d) \left(2\sqrt{3} + 5 \right) \left(2\sqrt{3} - 5 \right) \\ (d) \left(2\sqrt{3} + 5 \right) \left(2\sqrt{3} - 5 \right) \\ (\sqrt{3} + 1) \left(\sqrt{3} - 1 \right) \\ (\sqrt{3} + 2) \left(\sqrt{3} - 2 \right) \end{array}$$

Rationalize using conjugates...Rationalize the denominator!

$$\frac{\sqrt{2}+1}{\sqrt{4}}$$
$$\frac{\sqrt{4}}{2\sqrt{3}-2}$$

4

$$\frac{\sqrt{5}+1}{2\sqrt{5}-3}$$

You try....

a)
$$\frac{5}{2\sqrt{5}+3}$$

b) $\frac{2\sqrt{2}}{\sqrt{5}+4}$

.

$$\left(2\sqrt{5}+2\right)\left(2\sqrt{5}-2\right)$$

page 290 #9, 10, 11, 13

 $\sqrt{6x+9}$

Verify all solutions in the original equation to check for extraneous roots

 $5 + \sqrt{\left(2x - 1\right)} = 12$

 \rightarrow Isolate the radical

State the restrictions...

 $\sqrt{-4x+6}$

 $\sqrt{-5x}$

An extraneous root is a solution found when solving algebraically that is found not to be a solution when checking the result by substitution.

Page 300 #,2,3,4

Solve

 $3\sqrt{2x-4} - 4 = 2$

Solve $m - \sqrt{2m + 3} = 6$

Solve $\sqrt{2x+7} - x = -4$

. .

page 300-301 #5,6ab,7abd, 8bc, 10ab

February 17, 2016

Rational Exponents

First, what is a rational number?

Two types of rational numbers

Rational Exponents

First, what is a rational number?

Two types of rational numbers

Rational exponents:

Rational exponents are exponents that are rational numbers, rather self-explanatory, right?

Ex's

There is another way to express a rational exponent, using radicals. The most common radical is the square root.

 $\sqrt{x} =$

In general there are two types of rational exponents:

Simple Roots, where:

When the denominator is 2 we have $b^{\frac{1}{2}} = \sqrt[2]{b} = \sqrt{b}$, the square root, where we normally don't write the 2. When the denominator is 3, we have $b^{\frac{1}{2}} = \sqrt[3]{b}$ which is referred to as the cube root.

Complex roots where:

$$b^{\frac{m}{n}} = \left(\sqrt[n]{b}\right)^m = \sqrt[n]{b^m}$$

Convert to radical form:

Convert to exponent form:

.

$$\sqrt[3]{m^4}$$

 $\sqrt[10]{r^9}$

.

187

PRAC	TICE								
124.	Express using rational (fractional) exponents.								
	a. ∛5	b. $\sqrt{3}$	c. (∛6)²	d. ∜2 ³	e. $\sqrt{x^3}$	f. $\sqrt[5]{x^2}$			
	g. $\sqrt{7^3}$	h. $\left(\sqrt[4]{2}\right)^2$	i. ∛10	j. (∜x)⁴	k. ∜3°	I. $\sqrt{x^6}$			
125.	Express in 1	radical (root) f	orm.						
	a. $7^{\frac{1}{2}}$	b. $5^{\frac{1}{3}}$	c. $4^{\frac{2}{3}}$	d. $3^{\frac{3}{2}}$	e. $x^{\frac{3}{2}}$	f. $\left(\frac{1}{2}\right)^{-\frac{4}{3}}$			
	g. $2^{\frac{1}{4}}$	h. $x^{\frac{1}{2}}$	i. $6^{\frac{3}{4}}$	j. $(-3)^{\frac{2}{3}}$	k. $\left(\frac{1}{x}\right)^{-\frac{1}{3}}$	1. $\left(\frac{8}{3}\right)^{-\frac{2}{5}}$			
Evalu	uate each of	the following	•						
	a. $25^{\frac{1}{2}}$	b.	8 ¹ / ₃	c. $9^{\frac{3}{2}}$	d	$. 64^{\frac{2}{3}}$			

Chapter 3: Exponents

	126.	Evaluate without technology.						
		a. $49^{\frac{1}{2}}$ b. $27^{\frac{1}{3}}$	c. ∛26	d. $\left(\frac{9}{4}\right)^{\frac{3}{2}}$	e. $\sqrt[3]{125^2}$	f. $\left(\frac{1}{8}\right)^{\frac{4}{3}}$		
		g. $8^{\frac{2}{3}}$ h. $\left(\frac{8}{27}\right)$	$\frac{2}{3}$ i. $100^{-\frac{3}{2}}$	$j. \left(\sqrt{\frac{16}{25}}\right)^2$	k. ∜81 ³	I. $\left(\sqrt[5]{\frac{27}{8}}\right)^{\frac{5}{3}}$		
	127.	Simplify without techno	ology.		ī	1		
		a. $(27^{\frac{1}{2}})^{\frac{2}{3}}$ b.	$(16^{\frac{1}{3}})^{\frac{3}{2}}$	c.	$\left(\frac{1}{27}\right)^{-2}$	d. $\left[\left(\frac{16}{9}\right)^{-3}\right]^{-\overline{2}}$		
		e. $\left(\frac{x^4}{9}\right)^{\frac{3}{2}}$ f.	$4^{\frac{3}{2}} \times 8^{\frac{1}{3}}$	g. (·	$\sqrt{x^3}\left(\sqrt[4]{x^2}\right)$	h. $2^{\frac{1}{2}} \times 8^{\frac{1}{2}}$		
		i. $\frac{\sqrt[3]{x^2}}{\sqrt[4]{x}}$ j.	$(9x)^{\frac{3}{2}} \div (81x^2)^{\frac{3}{2}}$	k. (·	$\sqrt{\mathbf{x}}\left(\sqrt[3]{\mathbf{x}}\right)\div\left(\sqrt[4]{\mathbf{v}}\right)$	(x) I. $\frac{\sqrt[3]{27^2}}{\sqrt[4]{9^6}}$		
	128.	Simplify without techno	ology.					
		a. $\left(\frac{81}{16}\right)^{\frac{3}{4}} - \left(\frac{9}{4}\right)^{\frac{3}{2}}$	$b.\left(\frac{8}{27}\right)^{\frac{-2}{3}}$	$-\left(\frac{1}{2}\right)^2 + 4^0$	c. $\left(\frac{1}{2}\right)$	$\left(\frac{1}{2}\right)^{-3} + 9^{\frac{1}{2}} - 64^{\frac{2}{3}}$		
		d. $8^{\frac{2}{3}} + \left(\frac{1}{4}\right)^{-2} + 3^{0}$	e. $\frac{\left(\frac{1}{2}\right)^{-3}}{4}$	$27^{\frac{2}{3}}-5^{\circ}$ $1^{\frac{1}{2}}$	f. ($\frac{1}{3}\right)^{-2} + 8^{\frac{2}{3}} + 4^{0}$ $16^{-\frac{1}{2}}$		
☆	129.	Simplify.						
		a. $\frac{(9^{2n-1})(27^{n-1})}{(3^{n-1})^{-2}}$	b. (3 ^{2x})(9'	$(27^{x+1})(27^{x+1})$	c. (2	$\frac{25^{3-2x})(5^{3x-7})(125^{x+1})}{25^{x+2}}$		
		d. $\frac{(8^n)(2^{n-2})(4^{n+1})(3^n)}{\sqrt{3^{2n}}}$	$\frac{1}{2}$ e. $\frac{(2^x)(8^{x+1})}{(8^x)}$	$\frac{2}{\left(\sqrt{4^{x}}\right)}$	f. (∛	$\frac{\overline{8^{3x}}}{\left(\sqrt[5]{32^2}\right)^{x+1}}\left(16^{3x+1}\right)}{\left(\sqrt[5]{32^2}\right)^{x+1}}\left(4^{x+2}\right)}$		

Sharpe Mathematics © 2007

Mathematics 3204/3205