New outcome : Algebra and Number
AN2 - Operations on radicals and radical expressions with numerical and variable radicands.
$\sqrt[n]{\text { index }}\}_{\text {radicand }}^{\text {radical }}$
$a \geq 0$
$\sqrt{16}$
$\sqrt[4]{625}$
$\sqrt[3]{8}$
like radicals
$\begin{array}{lll}\sqrt{2} & 5 \sqrt{2} & -10 \sqrt{2}\end{array}$
similar to polynomials
$5 x \quad 10 x \quad-15 x$
$\sqrt[5]{3} \quad 7 \sqrt[5]{3} \quad-12 \sqrt[5]{3}$

$$
x^{2} \quad 7 x^{2} \quad-3 x^{2}
$$

Entire Radicals

Mixed Radicals

Converting Entire radicals to Mixed radicals
$\sqrt{24}$
$\sqrt{8}$

Convert the following to mixed radicals.

$$
\sqrt{45}
$$

$\sqrt{80}$
$\sqrt{72}$
$\sqrt{50}$

Convert the following from Mixed to Entire
$4 \sqrt{2}$
$2 \sqrt{3}$
$6 \sqrt{10}$
$2 \sqrt[4]{5}$
$3 \sqrt[3]{5}$

Write as a mixed radical.

1. $\sqrt{12 n^{3}}$
2. $\sqrt[3]{24 m^{5}}$
$\sqrt{-16}$
$\sqrt[3]{-27}$
$\sqrt{27 n^{9}} \sqrt{50 n^{15}} \quad \sqrt[3]{125 n^{7}} \quad \sqrt[3]{-40 n^{4}}$

Page 278-9 \#2,3,4, 5, 6

Order the following radicals from least to greatest.
$\sqrt{7}$
$-\sqrt{5}$
$\sqrt{3^{2}}$
$\frac{\sqrt{16}}{4}$

Adding and Subtracting Radicals

- you must have like radicals to add and subtract radicals

$$
\text { ex. } \sqrt{3}-2 \sqrt{5}+4 \sqrt{3}+3 \sqrt{5}-7 \sqrt{10}
$$

ex2. $\sqrt{2}+7 \sqrt{2}+4 \sqrt{2}-3 \sqrt{7}$

$$
\sqrt{20}+\sqrt{18}-\sqrt{128}+\sqrt{80}
$$

Page 279
\#6,8,9, 10

Multiplying Radicals

> -Radicand to radicand
> -coefficient to coefficient
$2 \sqrt{5} \cdot 3 \sqrt{7}$
$\sqrt{5} \times 2 \sqrt{3}$
$\sqrt{12} \times 5 \sqrt{2}$

$$
y \sqrt{6 y}(2 \sqrt{7 y})
$$

$$
\sqrt{2}(\sqrt{10}+7)
$$

* Divide coefficents if possible
* Divide radicands if possible

1. $\frac{12 \sqrt{20}}{4 \sqrt{5}}$
2. $10 \sqrt{\left(\frac{36}{25}\right)}$
3. $\frac{10 \sqrt{12}}{5 \sqrt{2}}$
4. $\frac{10 \sqrt{12}}{5 \sqrt{2}}$

We do not want to have radicals in the denominator

We need to rationalize the denominator to eliminate the radical
$\frac{2}{\sqrt{7}}$
a) $\frac{5}{\sqrt{5}}$
b) 5 $\frac{5}{\sqrt{3}}$
C) $\frac{2 \sqrt{3}}{\sqrt{5}}$
d) $\frac{4 \sqrt{2}}{3 \sqrt{11}}$

More Multiplying...
a) $\sqrt{3}(\sqrt{3}+2)$
b) $(5 \sqrt{2}-1)(\sqrt{2}+1)$
c) $(\sqrt{2}+1)(\sqrt{2}-1)$
d) $(2 \sqrt{3}+5)(2 \sqrt{3}-5)$

Multiplying by conjugate...
Conjugate:
$(\sqrt{3}+1)(\sqrt{3}-1) \quad(\sqrt{3}+2)(\sqrt{3}-2)$

$$
(2 \sqrt{5}+2)(2 \sqrt{5}-2)
$$

Rationalize using conjugates...Rationalize the denominator!
$\frac{4}{\sqrt{2}+1}$
$\frac{\sqrt{4}}{2 \sqrt{3}-2}$
$\frac{\sqrt{5}+1}{2 \sqrt{5}-3}$

You try....
a) $\frac{5}{2 \sqrt{5}+3}$
b) $\frac{2 \sqrt{2}}{\sqrt{5}+4}$
page 290 \#9, 10, 11, 13

AN3 - Solving Problems that involve radical equations

When solving radical equations, always state restrictions first

Verify all solutions in the original equation to check for extraneous roots

$$
5+\sqrt{(2 x-1)}=12
$$

\rightarrow Isolate the radical

State the restrictions...
$\sqrt{(3 x)} \quad \sqrt{-5 x} \quad \sqrt{6 x+9}$
$\sqrt{-4 x+6}$

Ex 2

$$
2 \cdot \sqrt{3 x-2}=12
$$

Solve: $\sqrt{x-3}+7=5$

An extraneous root is a solution found when solving algebraically that is found not to be a solution when checking the result by substitution.

Page 300 \#, 2,3,4

Solve
$3 \sqrt{2 x-4}-4=2$

Solve
$\sqrt{2 x+7}-x=-4$

Solve

$$
m-\sqrt{2 m+3}=6
$$

page 300-301 \#5,6ab,7abd, 8bc, 10ab

Rational Exponents

First, what is a rational number?

Two types of rational numbers

Rational Exponents

First, what is a rational number?

Two types of rational numbers

Rational exponents:

Rational exponents are exponents that are rational numbers, rather self-explanatory, right?

Ex's

There is another way to express a rational exponent, using radicals. The most common radical is the square root.

$$
\sqrt{x}=
$$

In general there are two types of rational exponents:
Simple Roots, where:

When the denominator is 2 we have $\mathrm{b} \sqrt{1 / 2}=\sqrt[2]{b}=\sqrt{b}$, the square root, where we normally don't write the 2 .
When the denominator is 3 , we have $b^{1 / 3}=\sqrt[3]{b} \quad$ which is referred to as the cube root.

Complex roots where:

$$
b^{\frac{m}{n}}=(\sqrt[n]{b})^{m}=\sqrt[n]{b^{m}}
$$

Convert to radical form:
$c^{\frac{4}{5}}$
$3^{\frac{5}{3}}$

Convert to exponent form:

$$
\sqrt[3]{m^{4}}
$$

$$
\sqrt[10]{r^{9}}
$$

PRACTICE

124. Express using rational (fractional) exponents.
a. $\sqrt[3]{5}$
b. $\sqrt{3}$
c. $(\sqrt[3]{6})^{2}$
d. $\sqrt[4]{2^{3}}$
e. $\sqrt{x^{3}}$
f. $\sqrt[5]{x^{2}}$
g. $\sqrt{7^{3}}$
h. $(\sqrt[4]{2})^{2}$
i. $\sqrt[7]{10}$
j. $(\sqrt[8]{x})^{4}$
k. $\sqrt[4]{3^{6}}$
I. $\sqrt{\mathrm{x}^{6}}$
125. Express in radical (root) form.
a. $7^{\frac{1}{2}}$
b. $5^{\frac{1}{3}}$
c. $4^{\frac{2}{3}}$
d. $3^{\frac{3}{2}}$
e. $x^{\frac{3}{2}}$
f. $\left(\frac{1}{2}\right)^{-\frac{4}{3}}$
g. $2^{\frac{1}{4}}$
h. $x^{\frac{1}{2}}$
i. $6^{\frac{3}{4}}$
j. $(-3)^{\frac{2}{3}}$
k. $\left(\frac{1}{x}\right)^{-\frac{1}{3}}$
126. $\left(\frac{8}{3}\right)^{-\frac{2}{5}}$

Evaluate each of the following.
a. $25^{\frac{1}{2}}$
b. $8^{\frac{1}{3}}$
c. $9^{\frac{3}{2}}$
d. $64^{\frac{2}{3}}$
126. Evaluate without technology.
a. $49^{\frac{1}{2}}$
b. $27^{\frac{1}{3}}$
c. $\sqrt[3]{2^{6}}$
d. $\left(\frac{9}{4}\right)^{\frac{3}{2}}$
e. $\sqrt[3]{125^{2}}$
f. $\left(\frac{1}{8}\right)^{-\frac{4}{3}}$
g. $8^{\frac{2}{3}}$
h. $\left(\frac{8}{27}\right)^{-\frac{2}{3}}$
i. $100^{-\frac{3}{2}}$
j. $\left(\sqrt{\frac{16}{25}}\right)^{2}$
k. $\sqrt[4]{81^{3}}$
I. $\left(\sqrt[5]{\frac{27}{8}}\right)^{-\frac{5}{3}}$
127. Simplify without technology.
a. $\left(27^{\frac{1}{2}}\right)^{\frac{2}{3}}$
b. $\left(16^{\frac{1}{3}}\right)^{\frac{3}{2}}$
c. $\left[\left(\frac{1}{27}\right)^{-2}\right]^{\frac{1}{3}}$
d. $\left[\left(\frac{16}{9}\right)^{-3}\right]^{-\frac{1}{2}}$
e. $\left(\frac{x^{4}}{9}\right)^{\frac{3}{2}}$
f. $4^{\frac{3}{2}} \times 8^{\frac{1}{3}}$
g. $\left(\sqrt{x^{3}}\right)\left(\sqrt[4]{x^{2}}\right)$
h. $2^{\frac{1}{2}} \times 8^{\frac{1}{2}}$
i. $\frac{\sqrt[3]{x^{2}}}{\sqrt[4]{x}}$
j. $(9 x)^{\frac{3}{2}} \div\left(81 x^{2}\right)^{\frac{1}{4}}$
k. $(\sqrt{x})(\sqrt[3]{x}) \div(\sqrt[4]{x})$
I. $\frac{\sqrt[3]{27^{2}}}{\sqrt[4]{9^{6}}}$
128. Simplify without technology.
a. $\left(\frac{81}{16}\right)^{\frac{3}{4}}-\left(\frac{9}{4}\right)^{\frac{3}{2}}$
b. $\left(\frac{8}{27}\right)^{\frac{-2}{3}}-\left(\frac{1}{2}\right)^{2}+4^{0}$
c. $\left(\frac{1}{2}\right)^{-3}+9^{\frac{1}{2}}-64^{\frac{2}{3}}$
d. $8^{\frac{2}{3}}+\left(\frac{1}{4}\right)^{-2}+3^{0}$
e. $\frac{\left(\frac{1}{2}\right)^{-3}+27^{\frac{2}{3}}-5^{0}}{4^{\frac{1}{2}}}$
f. $\frac{\left(\frac{1}{3}\right)^{-2}+8^{\frac{2}{3}}+4^{0}}{16^{-\frac{1}{2}}}$

* 129. Simplify.
a. $\frac{\left(9^{2 n-1}\right)\left(27^{n-1}\right)}{\left(3^{n-1}\right)^{-2}}$
b. $\frac{\left(3^{2 x}\right)\left(9^{x-1}\right)\left(27^{x+1}\right)}{9^{x}}$
c. $\frac{\left(25^{3-2 x}\right)\left(5^{3 x-7}\right)\left(125^{x+1}\right)}{25^{x+2}}$
d. $\frac{\left(8^{n}\right)\left(2^{n-2}\right)\left(4^{n+1}\right)\left(3^{n}\right)}{\sqrt{3^{2 n}}}$
e. $\frac{\left(2^{x}\right)\left(8^{x+2}\right)\left(32^{2 x-1}\right)}{\left(8^{x}\right)\left(\sqrt{4^{x}}\right)}$
f. $\frac{\left(\sqrt[3]{8^{3 x}}\right)(\sqrt{4})^{x-3}\left(16^{3 x+1}\right)}{\left(\sqrt[5]{2^{2}}\right)^{x+1}\left(4^{x+2}\right)}$

