OUTCOME:

AN1 - Demonstrate an understanding of absolute value of real numbers

The distance between two points on a number line, a and b can be found by taking the absolute value of the difference between a and b, where

** Absolute value signs are considered as brackets for order of operations. **

- 3. What does $\left|-7\right|$ represent?
- 4. What is the magnitude of -10?

5. Place the following numbers on a number

line A (0.7) B (-1.4) C (
$$-\frac{3}{5}$$
) D ($-2\frac{1}{4}$) E (2)

i) determine the absolute value of each number

ii) determine the distance between B and E, and between C and D

6. Determine the value of: $7|0.4-5|+|(-2)^3|$

Practice: Page 363 #1,3,4,5, 6ACE

y = |x| is defined as a piecewise function (composed of two or more separate functions)

For all values of f(x) less than 0, the y-values of |f(x)| is -f(x); and for all values of f(x) greater than 0 or equal to 0, the y-value of |f(x)| is f(x)

The following table of values is given for

Fill in the corresponding values for

y = f(x)y = |f(x)|

Function notation reminder:

x	f(x)	f(x)
-3	32	
-2	12	
-1	-2	
0	-10	
1	-12	
2	8	
3	2	

y=2x-3f(x) = 2x - 3f(5) = 2(5)-3

For the function f(x) = 2x - 1Make a table of values for f(x) and |f(x)|

х	f(x)	f(x)

Write the piecewise function for f(x). You need to find the x-intercept...

Write y = |-3x + 7| as a piecewise function

Write the following as piecewise functions.

a)
$$y = |2x+4|$$
 b) $y = |4x-3|$ c) $y = |-2x+5|$

When graphing, graph the line of y = f(x)

The x-intercept of this line is the same as the x-intercept of the absolute value function because the value of zero is still zero. This is called an invariant point.

(Argointe that mendation is applied to it.

x-intercept:

y-intercept:

domain:

range:

You try: y = |2x - 4|

Determine the x-intercept and y-intercepts:

Sketch the graph: State the domain and range:

Express as a piecewise function:

$$y = |3x + 1|$$

Determine the x-intercept and y-intercepts:

Sketch the graph:

•

State the domain and range:

Express as a piecewise function:

Practice: p375 # 1, 2, 5, 6ace, 9,11ab

Graph:
$$y = |x^2 + 4x - 12|$$

Find x-int's (y=0)...factor

Find y-int (x=0)

Find vertex (complete the square...or...average x-int's)

Absolute value and quadratic functions:

Graph:

$$y = \left| x^2 + 8x + 15 \right|$$

Find vertex (complete the square...or...average x-int's

Find x-int's (y=0)...factor

Find y-int (x=0)

•

Page 376-7 #7, 8abe, 10

6

When solving questions involving absolute value, both parts of the piecewise function must be examined individually.

Solve for x:
$$|x+9| = 7$$

x-intercept:
So: $|x+9| = \begin{cases} x+9, \text{ for } x \ge -9 \\ -(x+9), \text{ for } x < -9 \end{cases}$
Case 1: Case 2:

Solve for x: |3x - 6| = 12

Explain why |2x+3| = -11 cannot exist. (has no solution)

Practice: page 389 #2bc, 4abc

Absolute Value equations with extraneous solutions.

Solve : |2x-5| = 5-3x

You MUST VERIFY ANY EQUATIONS OF THIS TYPE!!!!

Solve:

$$\left|x+5\right| = 4x-1$$

page 389 #5

.