OUTCOME:
AN1 - Demonstrate an understanding of absolute value of real numbers

$$
\therefore|-5|=\quad \text { and } \quad|5|=
$$

\square

The distance between two points on a number line, a and b can be found by taking the absolute value of the difference between a and b, where

\square
** Absolute value signs are considered as brackets for order of operations. ${ }^{* *}$

1. Evaluate:
a. $|-7|$
b. $\quad|9|$
c. $|-2-8|$
d. $|5--6|$
2. Draw the above absolute values on a number line

3. What does $|-7|$ represent?
4. What is the magnitude of -10 ?
5. Place the following numbers on a number
line

$$
\mathrm{A}(0.7)
$$

B (-1.4)
C $\left(-\frac{3}{5}\right)$
D $\left(-2 \frac{1}{4}\right)$
E (2)

i) determine the absolute value of each number
ii) determine the distance between B and E , and between C and D
6. Determine the value of: $\quad 7|0.4-5|+\left|(-2)^{3}\right|$

Practice: Page 363 \#1,3,4,5, 6ACE

Outcome: RF2 - Graph and analyze absolute value functions (linear and quadratic) to solve problems.

$$
y=|x|
$$

$y=|x|$ is defined as a piecewise function (composed of two or more separate functions)

For all values of $f(x)$ less than 0 , the y-values of $|f(x)|$ is $-f(x)$;
and for all values of $f(x)$ greater than 0 or equal to 0 , the y-value of $|f(x)|$ is $f(x)$

$$
\begin{array}{cc}
\text { The following table of values is given for } & y=f(x) \\
\text { Fill in the corresponding values for } & y=|f(x)|
\end{array}
$$

x	$f(x)$	$\|f(x)\|$
-3	32	
-2	12	
-1	-2	
0	-10	
1	-12	
2	8	
3	2	

Function notation reminder:

$$
\begin{aligned}
& y=2 x-3 \\
& f(x)=2 x-3 \\
& f(5)=2(5)-3
\end{aligned}
$$

For the function $\mathrm{f}(\mathrm{x})=2 \mathrm{x}-1$
Make a table of values for $f(x)$ and $|f(x)|$

x	$f(x)$	$\|f(x)\|$

Write the piecewise function for $f(x)$.
You need to find the x-intercept...

Write $y=|-3 x+7|$ as a piecewise function

Write the following as piecewise functions.
a) $y=|2 x+4|$
b) $y=|4 x-3|$
c) $y=|-2 x+5|$

When graphing, graph the line of $y=f(x)$
The x-intercept of this line is the same as the x-intercept of the absolute value function because the value of zero
is still zero. This is called an mvarrant pome.
 x-intercept:
y-intercept:
domain:
range:
piecewise function:

You try: $y=|2 x-4|$

Determine the x -intercept and y -intercepts:

Sketch the graph:
State the domain and range:

Express as a piecewise function:

$$
y=|3 x+1|
$$

Determine the x-intercept and y-intercepts:

Sketch the graph:
State the domain and range:

Express as a piecewise function:

Practice: p375 \# 1, 2, 5, 6ace, 9,11ab

Absolute value and quadratic functions:
Graph: $y=\left|x^{2}+4 x-12\right|$
Find x-int's $(y=0)$...factor

Find y -int $(\mathrm{x}=0)$

Find vertex (complete the square...or...average x-int's)

Absolute value and quadratic functions:
Graph:

$$
y=\left|x^{2}+8 x+15\right|
$$

Find x-int's $(y=0)$...factor

Find y -int $(\mathrm{x}=0)$

Page 376-7 \#7, 8abe, 10

Find vertex (complete the square...or...average x-int's

Solving inequalities graphically.
Solve: $\quad|x-4|=6$

Solve: $\quad|2 x-2|=6$

When solving questions involving absolute value, both parts of the piecewise function must be examined individually.

Solve for $\mathrm{x}:|x+9|=7$
x -intercept:
So: $\quad|x+9|=\left\{\begin{array}{l}x+9, \text { for } \quad x \geq-9 \\ -(x+9), \text { for } x<-9\end{array}\right.$
Case 1:
Case 2:

Solve for $\mathrm{x}: \quad|3 x-6|=12$

Explain why $|2 x+3|=-11$ cannot exist. (has no solution)

Practice: page 389 \#2bc, 4abc

Absolute Value equations with extraneous solutions.
Solve: $|2 x-5|=5-3 x$
2.0 Absolute value_1.notebook

Solve:

$$
|x+5|=4 x-1
$$

