

Group 1:	Group 2	Group 3
$y = (x-3)^2$ $y = (x+5)^2$ $y = (x-1)^2$	$y = x^{2} - 3$ $y = x^{2} + 2$ $y = x^{2} + 1$	$y = 2x^{2}$ $y = \frac{1}{2}x^{2}$ $y = -3x^{2}$

March 18, 2016

What is the effect of the following:

 $y = ax^{2}$ $y = x^{2} + k$ $y = (x - h)^{2}$ $y = -x^{2}$

Transformations of Quadratics Functions

$$y = a(x-p)^2 + q$$
 vertex form

Transformations of Quadratic Functions

4. How many x-intercepts will each function have?

$$y = (x-5)^2 - 7$$
 $y = 2(x+7)^2 + 3$ $y = -3(x+2)^2$

RF3 - Analyze quadratic functions of the form $y = a(x - p)^2 + q$ Determine the vertex, domain and range, direction of opening, axis of symmetry, x and y intercepts

1. Determine a rule for each transformation

A.
$$y = ax^2$$

 $y = -x^2$
 $y = 2x^2$
 $y = -2x^2$
 $y = -\frac{1}{2}x^2$

$$\mathsf{B.} \quad y = x^2 + q$$

$$y = x^{2} + 4$$

 $y = x^{2} - 3$
 $y = x^{2} - 5$

 $\mathsf{C}. \ y = (x - p)^2$

.

$$y = (x-3)^2$$

 $y = (x+4)^2$
 $y = (x+1)^2$
 $y = (x-2)^2$

3. Put it all together: $y = a(x-p)^2 + q$

Use your conclusions from #1 to state the vertex and the direction of opening for each function

$$y = 2(x-3)^{2} + 4$$
$$y = -3(x+1)^{2} - 5$$

2. For each function: state the vertex, axis of symmetry and the maximum/minimum value

5.

Function	vertex	range	axis of symmetry	direction of opening	x int's?
$y = (x-2)^2 + 3$					
$y = -x^2 - 3$					
$y = (x+5)^2$					
$y = -4(x+1)^2 - 3$					

6. Use transformations to sketch each function

 $y = (x+3)^2 - 2$

$$y = 2(x-1)^{2} + 3$$

$$y = -3(x+2)^{2} + 1$$

$$y = \frac{1}{2}(x+4)^{2}$$

page 157 #3,4,6,7

Determining the equation of a quadratic equation.

EXAMPLE: Examine the following graphs and identify the equation of each function.

As you can see, using the characteristics of a quadratic function:

Vertex	(p, q)	
Axis of Symmetry	x=p	We can write the equation in vertex form
Vertical Stretch	a	$y = a(x-p)^2 + q$

The most challenging characteristic to find is the vertical stretch. This value can be determined if we know the vertex and one other point.

A golf ball is hit from the fairway with a high chip shot. It reaches a maximum height of 20 m and lands on the green 10 m away. Determine the equation that describes the golf ball's path.

Write the equation of the following in vertex form:

1

2. Find the vertical stretch and write the equation in vertex form.

a. vertex (2, 5) and has a y-intercept of 3 b. vertex (6, -2) and has a y-intercept of -8 c. vertex (4, 3) and has x-intercepts 2 and 6 d. vertex (-2, -4) and has x-intercepts -4 and 0

3. A rock is thrown into the air from an initial height of 2 metres. After 2 seconds it reaches a maximum height of 10 metres. Determine the equation of the quadratic function that describes the path of the rock.

3. A wedding arch is in the shape of a parabola. If the arch is 2 m wide and 3 m tall, determine the equation that describes the shape of the arch.

4. An arrow is fired into the air and reaches a maximum height of 30 m at a horizontal distance of 50 m from where it is fired. It sticks in the ground 90 m away from where it is fired.

a) determine the equation of the quadratic function that describes the path of the arrow.b) How high is the arrow after travelling a horizontal distance of 80 m?

5. A football is kicked for a field goal attempt and it reaches a maximum height of 25 m at a horizontal distance of 20 m.

a) Determine the equation of the quadratic function that describes the path of the football.b) If the field goal marker is 35 m away at a height of 3 m, would the kick score the points?

RF4. Analyze quadratic functions of the form to identify characteristics of the corresponding graph, including: vertex, domain and range, direction of opening, axis of symmetry, x- and y-intercepts; and to solve problems. [CN, PS, R, T, V]

Vertex form:
$$y = (x - 2)^2 + 7$$

Expanded:

Standard Form:

Going backwards, we need to use a process called completing the square to return (or to convert) to vertex form

$$y = x^2 - 4x + 11$$

we need to make $y=x^2 - 4x + ____$ part of a perfect square trinomial

 $y = x^2 - 5x + 1$

More completing the square!

 $y = -x^2 + 6x + 7$

When $a \neq 1$, you need to group the first two terms and factor the leading coefficient out.

 $y = x^2 + 6x + 5$

 $y = 3x^2 + 12x - 5$

 $y = x^2 - 10x + 12$

4

Using completing the square to derive the quadratic formula:

 $y = ax^2 + bx + c$

2. Complete the square and find the vertex! $y = -x^2 - 6x + 2$

 $y = x^2 + 5x - 2$

page 192-3 #2ab, 3ab, 4ab, 5ab, 6ab, 7ab, 9, 12ac

March 18, 2016

Complete the square to write in vertex form	SCO: RF5. Solve problems that involve quadratic equations. $[C, CN, PS, R, T, V]$				
1. $y = x^2 + 16x - 2$	2. $y = x^2 - 7x - 5$	Solv	Solving a Quadratic Equation		
y = x + 10x - 2	2. $y = x - 7x - 3$	Roots	zeros	x-intercepts	
		of an equation	of a function	of a graph	
		These all mean to let	y=0 and solve for x		
		Methods used to solve quadra	tic equations		
		1. Square root		2. Factor	
		$x^2 - 49 = 0$		$x^2 + 3x - 10 = 0$	
3. $y = -x^2 - 14x + 3$	4. $y = 4x^2 - 12x + 7$	3. Complete the square $x^2 - 6x + 1 = 0$		4. Quadratic formula $x^2 - 6x + 1 = 0$	

5. $y = -3x^2 + 18x + 1$

.

March 18, 2016

		How do you determine the number of roots when in standard form?		
Show that the following quadratic equations are equivalent standard form vertex form		$y = x^2 + 4x - 1$	$y = x^2 - 6x + 9$	$y = x^2 - 2x + 5$
$y = x^2 + 10x + 7$	$y = (x+5)^2 - 18$			

The Discriminant tells you what type of roots the quadratic function will have

A Quadratic Equation has two roots

standard form	vertex form	factored form
$y = ax^2 + bx + c$	$y = a(x-p)^2 + q$	y = a(x-r)(x-s)

What kind of roots will a quadratic function have?

,

 $y = (x+2)^2 - 5$ $y = (x-3)^2$ $y = (x-1)^2 + 3$