$y=x^{2}$

x	y
-3	
-2	
-1	
0	
1	
2	
3	

Quadratics

Groups of 4:
For your equations:
a) make a table of values
b) plot the graph
c) identify and label the:
i) vertex
ii) Axis of symmetry
iii) x - and y-intercepts

Group 1:	Group 2	Group 3
$y=(x-3)^{2}$	$y=x^{2}-3$	$y=2 x^{2}$
$y=(x+5)^{2}$	$y=x^{2}+2$	$y=\frac{1}{2} x^{2}$
$y=(x-1)^{2}$	$y=x^{2}+1$	$y=-3 x^{2}$

$y=x^{2}-3$
$y=2 x^{2}$
$y=\frac{1}{2} x^{2}$
$y=-3 x^{2}$

What is the effect of the following:

$$
\begin{aligned}
& y=a x^{2} \\
& y=x^{2}+k \\
& y=(x-h)^{2} \\
& y=-x^{2}
\end{aligned}
$$

Transformations of Quadratics Functions

$$
y=a(x-p)^{2}+q \quad \text { vertex form }
$$

Transformations of Quadratic Functions

RF3 - Analyze quadratic functions of the form $y=a(x-p)^{2}+q$
Determine the vertex, domain and range, direction of opening, axis of symmetry, x and y intercepts

1. Determine a rule for each transformation
A. $y=a x^{2}$

$$
\begin{array}{ll}
y=-x^{2} & y=\frac{1}{2} x^{2} \\
y=2 x^{2} & y=-\frac{1}{2} x^{2} \\
y=-2 x^{2} &
\end{array}
$$

B. $y=x^{2}+q$

$$
\begin{array}{ll}
y=x^{2}+4 & y=x^{2}+1 \\
y=x^{2}-3 & y=x^{2}-5
\end{array}
$$

C. $y=(x-p)^{2}$

$$
\begin{array}{ll}
y=(x-3)^{2} & y=(x+4)^{2} \\
y=(x+1)^{2} & y=(x-2)^{2}
\end{array}
$$

3. Put it all together: $y=a(x-p)^{2}+q$

Use your conclusions from \#1 to state the vertex and the direction of opening for each function

$$
\begin{aligned}
& y=2(x-3)^{2}+4 \\
& y=-3(x+1)^{2}-5
\end{aligned}
$$

2. For each function: state the vertex, axis of symmetry and the maximum/minimum value
3. How many x -intercepts will each function have?

$$
y=(x-5)^{2}-7 \quad y=2(x+7)^{2}+3 \quad y=-3(x+2)^{2}
$$

Function	vertex	range	axis of symmetry	direction of opening	x int's?
$y=(x-2)^{2}+3$					
$y=-x^{2}-3$					
$y=(x+5)^{2}$					
$y=-4(x+1)^{2}-3$					

6. Use transformations to sketch each function

$$
\begin{aligned}
& y=(x+3)^{2}-2 \\
& y=2(x-1)^{2}+3 \\
& y=-3(x+2)^{2}+1 \\
& y=\frac{1}{2}(x+4)^{2}
\end{aligned}
$$

Determining the equation of a quadratic equation
EXAMPLE: Examine the following graphs and identify the equation of each function.

a. Identify the vertex.

\qquad
\qquad
b. Identify the axis of symmetry. of
c. Identify the y-intercept.

d. Identify the vertical stretch. \qquad

a. Identify the vertex.
b. Identify the axis of symmetry. \Rightarrow \qquad
\qquad
d. Idenify the vertical stretch \because \qquad

As you can see, using the characteristics of a quadratic function

Vertex
Axis of Symmetry
Vertical Stretch
(p, q)
${ }_{x}=\mathrm{p}$

We can write the equation in vertex form

$$
y=a(x-p)^{2}+q
$$

The most challenging characteristic to find is the vertical stretch.This value can be determined if we know the vertex and one other point.
A golf ball is hit from the fairway with a high chip shot. It reaches a maximum height of 20 m and lands on the green 10 m away. Determine the equation that describes the golf ball's path.

W/rite the equation of the following in vertex form

2. Find the vertical stretch and write the equation in vertex form.
a. vertex $(2,5)$ and has a y-intercept of 3
vertex $(6,-2)$ and has a y-intercept of -8
c. vertex $(4,3)$ and has x-intercepts 2 and 6
d. vertex $(-2,-4)$ and has x-intercepts -4 and 0
3. A rock is thrown into the air from an initial height of 2 metres. After 2 seconds it reaches a maximum height of 10 metres. Determine the equation of the quadratic function that describes the path of the rock.
3. A wedding arch is in the shape of a parabola. If the arch is 2 m wide and 3 m tall, determine the equation that describes the shape of the arch.
4. An arrow is fired into the air and reaches a maximum height of 30 m at a horizontal distance of 50 m from where it is fired. It sticks in the ground 90 m away from where it is fired.
a) determine the equation of the quadratic function that describes the path of the arrow.
b) How high is the arrow after travelling a horizontal distance of 80 m ?
5. A football is kicked for a field goal attempt and it reaches a maximum height of 25 m at a horizontal distance of 20 m .
a) Determine the equation of the quadratic function that describes the path of the football.
b) If the field goal marker is 35 m away at a height of 3 m , would the kick score the points?

1. Quadratics.notebook

RF4. Analyze quadratic functions of the form to identify characteristics of the
corresponding graph, including: vertex, domain and range, direction of opening, axis of symmetry, x - and y -intercepts; and to solve problems. [CN, PS, R, T, V]
Vertex form: $\quad y=(x-2)^{2}+7$

$$
y=x^{2}-5 x+1
$$

Expanded:
Standard Form:
Going backwards, we need to use a process called completing the square to return (or to convert) to vertex form

$$
y=x^{2}-4 x+11
$$

$$
\begin{aligned}
& \text { we need to make } y=x^{2}-4 x+_ \text {part of a perfect } \\
& \text { square trinomial }
\end{aligned}
$$

$$
y=x^{2}+6 x+5
$$

More completing the square

$$
y=-x^{2}+6 x+7
$$

$$
y=3 x^{2}+12 x-5
$$

$$
y=x^{2}-10 x+12
$$

$$
y=a x^{2}+b x+c
$$

2. Complete the square and find the vertex!
$y=-x^{2}-6 x+2$
$y=x^{2}+5 x-2$
page 192-3 \#2ab, 3ab, 4ab, 5ab, 6ab, 7ab, 9, 12ac

Complete the square to write in vertex form

1. $y=x^{2}+16 x-2$
2. $y=x^{2}-7 x-5$

SCO: RF5. Solve problems that involve quadratic equations. [C, CN,
PS, R, T, V]

Solving a Quadratic Equation

Roots	zeros	x-intercepts
of an equation	of a function	of a graph

$$
\text { These all mean to let } \mathrm{y}=0 \text { and solve for } \mathrm{x}
$$

Methods used to solve quadratic equations

1. Square root	2. Factor
$x^{2}-49=0$	$x^{2}+3 x-10=0$

3. Complete the square	4. Quadratic formula
$x^{2}-6 x+1=0$	$x^{2}-6 x+1=0$

$$
\begin{aligned}
& \text { 5. Graph } \\
& (x-2)^{2}-4=0 \\
& x^{2}-4 x=0
\end{aligned}
$$

Show that the following quadratic equations are equivalent

standard form	vertex form
$y=x^{2}+10 x+7$	$y=(x+5)^{2}-18$

$y=x^{2}+10 x+7$
$y=(x+5)^{2}-18$

A Quadratic Equation has two roots

$$
\begin{array}{ccc}
\text { standard form } & \text { vertex form } \\
y=a x^{2}+b x+c & y=a(x-p)^{2}+q & y=a(x-r)(x-s)
\end{array}
$$

What kind of roots will a quadratic function have?

$$
y=(x+2)^{2}-5 \quad y=(x-3)^{2} \quad y=(x-1)^{2}+3
$$

How do you determine the number of roots when in standard form?

$$
y=x^{2}+4 x-1 \quad y=x^{2}-6 x+9 \quad y=x^{2}-2 x+5
$$

The Discriminant tells you what type of roots the quadratic function will have

 $y=(x-1)^{2}+3$

